怎樣解題

怎樣解題 pdf epub mobi txt 电子书 下载 2025

原文作者: G. Polya
想要找书就要到 灣灣書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

圖書描述

任何領域的每一個人,都必須學會怎樣解題。

  本書作者波利亞,是數學教育史上極重要的數學教育家,《怎樣解題》可說是流傳最廣、影響最深遠的代表作,自出版以來,已經影響了一代又一代的讀者。在書中,波利亞提出了解題的四大步驟,並且穿插了範例,你可以跟著波利亞的腳步,學會如何從推理與提問,直搗證明題或求解題的核心,而這樣的數學方法,對解決任何問題都有幫助。

  熟讀《怎樣解題》,你就能成為思考、分析、解題的頂尖高手。
 

著者信息

作者簡介

波利亞G. Polya


  1887年生於匈牙利布達佩斯,父母為猶太人。求學時期攻讀哲學、物理、數學,在布達佩斯大學取得數學博士學位。

  第一次世界大戰期間,波利亞在蘇黎士的瑞士聯邦理工學院(ETH)擔任教職,於1928年升為正教授。1933年曾前往美國普林斯頓大學訪問。

  1940年,由於歐陸政治情勢,被迫移民美國,1943年起獲聘為史丹福大學的教授,直到1953年榮譽退休。退休後,波利亞仍十分忙碌,除了繼續在史丹福授課,更熱心數學教育,致力研究數學問題的解題策略。

  波利亞是二十世紀極重要的數學家、數學教育家。在純數學領域,他與Gabor Szego合寫了《分析中的問題與定理》(Problems and Theorems in Analysis)這部傑作;在數學學習及教學方面,除了《怎樣解題》,還陸續出版了《數學與猜想》(Mathematics and Plausible Reasoning,共兩卷)與《數學的發現》(Mathematical Discovery,共兩卷)。

譯者簡介

蔡坤憲


  東海大學物理系畢業,國立交通大學電子物理所碩士,曾在中學服務三年,任教國中理化與高中物理等科目。目前在紐西蘭懷卡托大學(University of Waikato)科學與科技教育研究中心,攻讀科學教育博士學位,研究領域為科學教育、物理教學、師資培育與教育多媒體設計;也在懷大物理系兼任助教的工作。劍道是主要的課餘興趣。

  譯有《觀念物理II:轉動力學、萬有引力》、《怎樣解題》,著有《觀念物理VI:習題解答》(皆為天下文化出版)。
 

圖書目錄

英文版初版序
初版第七刷序
第二版序
「怎樣解題」提示表
序 康威(John H. Conway)
前言

第一部:在教室裡
目的
第1節: 幫助學生
第2節: 提問、建議、心智活動
第3節: 普遍性第4節 常識
第5節:老師與學生、模仿與練習
主要步驟及主要提問
第6節: 四個階段
第7節: 了解問題
第8節: 例子
第9節: 擬定計畫
第10節: 例子
第11節: 執行計畫
第12節: 例子第
第13節 驗算與回顧
第14節: 例子
第15節: 不同的做法
第16節: 老師提問的方法
第17節: 好的提問與壞的提問
更多的例子
第18節: 作圖題
第19節: 證明題
第20節: 速率問題

第二部:怎樣解題 一段對話
認識問題
進一步了解問題
尋找有用的好想法
執行計畫回顧

第三部 啟發法小辭典
類比/輔助元素/輔助問題/波爾察諾/靈感/
你能驗算結果嗎?/你能用不同的方法導出這個結果嗎?/
你能運用這個結果嗎?/執行計畫/條件/矛盾/系理/
你能從已知數中找到什麼線索?/你可以把問題重述一遍嗎?/
分解與重組/定義/笛卡兒/決心、希望與成功/診斷/
你是否使用了所有的已知數?/你知道什麼相關的問題嗎?/
畫個圖/檢查你的猜測/圖形/一般化/你以前見過它嗎?/
這裡有個已經解決過的相關問題/啟發法/啟發式推理/
如果不能解決眼前的問題/歸納與數學歸納法/發明者的悖論/
這個解能否滿足所給的條件?/萊布尼茲/引理/仔細看未知數/
現代啟發法/符號與記法/帕普斯/拘泥與精通/實際的問題/
求解題與證明題/進展與成就/字謎/歸謬法與間接證法/多餘的/
例行性的問題/發現的法則/表達風格的守則/教學的守則/
把條件的各個部分分開/列方程式/進度的象徵/特殊化/潛意識的工作/
對稱/解題的術語/量綱檢驗法/未來的數學家/聰明的解題高手/
聰明的讀者/傳統的數學教授/改變問題/未知數是什麼?/
為什麼要證明?/諺語的智慧/倒推法

第四部:問題、提示、解答

圖書序言

第一部 在教室裡

主要步驟及主要提問

6. 四個階段

在尋求解答的過程中,我們的想法往往會一再改變,看待問題的方式與觀點,也都會一再產生變化。在剛開始解題時,我們對問題的了解可能很有限,也不完整;在有些進展以後,會對問題產生不同的了解;到了快要知道答案的時候,對問題自然又有一番新的認識。

為了方便把「提示表」上的提問和建議分門別類,做個整理,我們把解題活動分成四個主要階段:首先,我們必須要了解問題:我們必須很清楚地知道,什麼是我們要尋找的解答。第二,我們必須要了解問題裡存在的各個關係,例如已知數和未知數之間有什麼關係,並據此擬定一個計畫,來求得解答。第三,我們確實動手來執行計畫(數學計算)。最後,我們要回顧整個解答過程,驗算答案並討論它的意義。

每個階段都有它的重要性。有時候,學生也許會靈光一閃,可以跳過所有的準備步驟,直接得出解答。當然很多人都希望能有這種幸運的時光;但是相對來說,沒有人會希望,在辛辛苦苦經歷這四個階段之後,卻還是無法得出什麼好點子。最糟的情形則是,學生在了解問題之前,就匆匆動手開始計算。一般來說,在不了解問題的整體關聯,或是心裡還沒有份計畫之前,就開始從事細節的計算工作,往往是無濟於事的。此外,在執行計畫(計算)的過程中,如果學生可以一步一步地檢查,往往可以避免很多錯誤與疏失。若少了驗算,或是沒有回顧一下解答的過程,則往往無法從解題的活動中,獲得最佳的結果。

7. 了解問題

去回答一個你不了解的問題,實在是件愚蠢的事情。為了你不想得到的結果,卻又必須辛勤工作,實在很令人沮喪。不論在學校裡或學校外,這類愚蠢而又令人沮喪的事,卻經常發生。老師實在應該避免讓這類的事情,在他的課堂上發生。學生應該要了解問題,但是,光只有了解問題是不夠的,他們還應該要有份渴望或動機,希望去把解答找出來。如果學生缺乏對問題的了解或興趣,這並不全然是他們的錯;選題或出題要恰當,不要太難,也不要太簡單,並要自然而有趣,而且要有足夠的時間,來對題目做自然而有趣的說明。

圖書試讀

None

用户评价

相关图书

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 twbook.tinynews.org All Rights Reserved. 灣灣書站 版權所有