Advanced Biomaterials for Biomedical Engineering

Advanced Biomaterials for Biomedical Engineering pdf epub mobi txt 电子书 下载 2025

圖書標籤:
  • Biomaterials
  • Biomedical Engineering
  • Tissue Engineering
  • Drug Delivery
  • Regenerative Medicine
  • Materials Science
  • Bioengineering
  • Nanomaterials
  • Medical Devices
  • Biocompatibility
想要找书就要到 灣灣書站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

圖書描述

Biomedical engineering is the key technology of the 21st century. The possibility to exploit the structures and process of advanced materials for novel functional materials, biosensors, stem cells technology, regenerative medicine, drug delivery systems has created the rapidly growing field of biomaterials technology. Designed as a broad survey of the field, this book combines contributions from molecular biology, materials science and medicine to fathom the full scope of current and future developments.

  It is divided into four main sections:

  •Interface systems
  •Physiochemical properties
  •Structures of biomaterials
  •Medical applications

  Each chapter describes in detail currently valuable methods and contains numerous references to the primary literature, making this the perfect “filed guide” for chemists, biologists and physicians who want to explore the fascinating world of biomedical engineering.
前沿材料科學在生物醫學工程中的應用:一部聚焦於生物活性與可降解聚閤物的深度探討 圖書名稱: Advanced Biomaterials for Biomedical Engineering 圖書內容概述: 本書旨在為生物醫學工程、材料科學、化學工程以及相關領域的研究人員、工程師和高級學生提供一個關於下一代生物材料的全麵且深入的綜述與技術指南。本書的核心焦點在於生物活性、可控降解性、智能響應性以及先進的組織工程支架材料的開發、錶徵和臨床轉化。 本書的敘述邏輯從基礎的材料-生物相互作用原理齣發,逐步深入到特定應用場景下的材料設計策略,並詳細探討瞭當前麵臨的挑戰與未來的發展方嚮。 --- 第一部分:生物材料的基礎與界麵調控(Chapters 1-4) 第一章:生物材料的定義、分類與生物相容性基礎 本章首先界定瞭現代生物材料的範疇,區彆於傳統的惰性植入物。重點分析瞭生物惰性、生物活性和生物可吸收性材料的本質差異。隨後,深入探討瞭生物相容性的定量評估方法,包括細胞毒性測試(ISO 10993標準)、炎癥反應的分子機製,以及材料錶麵能、潤濕性和拓撲結構對蛋白質吸附和細胞黏附的決定性影響。詳細介紹瞭“材料的命運由錶麵決定”這一核心概念。 第二章:聚閤物在生物醫學中的核心地位與設計原則 本章集中探討瞭閤成聚閤物和天然高分子在生物醫學中的應用基礎。內容涵蓋瞭聚酯類(如PLA、PGA、PLGA)、聚氨酯、聚環氧乙烯衍生物(如PEG化)的閤成路綫、分子量控製及其在體內的降解動力學。此外,深入分析瞭天然高分子,如膠原蛋白、殼聚糖、透明質酸和藻酸鹽的化學修飾技術(如交聯、功能化),以優化其機械性能和生物活性。強調瞭聚閤物微結構對藥物釋放速率和細胞行為的調控作用。 第三章:界麵生物學:蛋白質吸附與細胞響應 本章是理解材料成功與否的關鍵。詳細解析瞭血漿蛋白在材料錶麵的動力學吸附模型,特彆是“Vroman效應”在血栓形成過程中的體現。研究瞭材料錶麵電荷、疏水性梯度如何誘導特定的細胞粘附分子(如整閤素)的激活狀態。此外,還涵蓋瞭最新的錶麵工程技術,如“生物分子印跡”(Molecular Imprinting)和等離子體沉積技術,用於精確控製界麵化學。 第四章:材料的生物降解與生物吸收機製 本章聚焦於可吸收材料的設計。詳細闡述瞭水解(酯鍵斷裂)、酶促降解(蛋白酶、酯酶作用)的動力學模型。對於閤成聚閤物,分析瞭降解産物(如乳酸、乙醇酸)的代謝途徑及其對局部pH環境的影響,這是評估植入物長期安全性的關鍵指標。對於天然高分子,討論瞭如何通過改變交聯密度來精確控製降解速率,以匹配特定組織(如縫閤綫、骨替代物)的再生周期。 --- 第二部分:先進功能化與組織工程支架(Chapters 5-8) 第五章:生物活性材料:整閤生長因子與基因遞送係統 本章探討瞭如何賦予材料主動的生物信號傳遞能力。詳細介紹瞭生長因子(如BMP-2、VEGF)的共價偶聯、包封和控釋技術。重點分析瞭利用pH敏感或溫度敏感的聚閤物納米膠囊或微球來實現“按需”釋放。在基因治療載體方麵,討論瞭非病毒載體(如陽離子脂質體、聚閤物復閤物)的設計,用於靶嚮遞送siRNA或質粒DNA以調控局部細胞命運。 第六章:智能與響應性生物材料(Smart Biomaterials) 本章全麵介紹瞭能夠響應外部環境變化的“第四代”材料。深入研究瞭對以下刺激産生響應的聚閤物係統: 1. pH響應: 用於靶嚮腫瘤微環境或炎癥部位的藥物釋放。 2. 溫度響應: 如聚(N-異丙基丙烯酰胺) (PNIPAAm) 基材料,用於溫度觸發的藥物釋放或細胞收集。 3. 機械/應力響應: 具有壓電或應變響應特性的聚閤物,用於神經接口或肌腱修復。 4. 光響應: 利用偶氮苯等光敏基團實現對紫外或可見光的高度精確的時空控製。 第七章:組織工程支架的設計與製造:從宏觀到納米尺度 本章是本書的核心應用章節之一,專注於構建三維(3D)支架以模仿天然細胞外基質(ECM)。首先,詳述瞭主要的支架構建技術: 靜電紡絲技術(Electrospinning): 製造具有高孔隙率和類ECM納米縴維的支架。分析瞭溶液參數和收集條件對縴維形態的影響。 3D生物打印(3D Bioprinting): 重點介紹基於擠齣、光聚閤和噴墨技術的生物墨水(Bioinks)配方設計,包括水凝膠(如海藻酸鹽、甲基丙烯酸化明膠 (GelMA))的流變學要求,以及打印過程中的細胞存活率優化。 冷凍乾燥與相分離技術。 本章強調瞭支架的孔隙連通性、機械剛度與組織再生成功率之間的量化關係。 第八章:生物材料在特定組織再生中的應用案例 本章將前述的材料科學原理應用於具體的臨床挑戰: 骨組織工程: 活性陶瓷(如生物活性玻璃、羥基磷灰石)與聚閤物復閤支架的設計,用於增強骨傳導性和骨誘導性。 心血管組織工程: 具有優異彈性和抗血栓性的聚氨酯和彈性體用於人造血管的開發,重點關注內皮細胞的整閤。 神經組織修復: 導電性聚閤物支架(如PEDOT:PSS)在引導神經軸突生長中的作用,以及微納結構化導管在周圍神經修復中的應用。 --- 第三部分:高級錶徵與未來展望(Chapters 9-10) 第九章:生物材料的高級結構與功能錶徵方法 本章全麵迴顧瞭用於驗證生物材料性能的關鍵分析工具,超越瞭常規的DSC和TGA分析: 機械性能: 動態力學分析(DMA)、原子力顯微鏡(AFM)用於測量材料在生理條件下的粘彈性。 錶麵結構分析: 聚焦於高分辨率透射電子顯微鏡(HR-TEM)和聚焦離子束(FIB)用於納米尺度的結構解析,以及X射綫光電子能譜(XPS)用於錶麵化學元素的精確測定。 體內/體外性能評估: 詳細介紹瞭體內成像技術(如MRI、PET)對植入物降解和藥物分布的實時追蹤方法。 第十章:臨床轉化、監管挑戰與未來趨勢 本章麵嚮實際應用,討論瞭從實驗室到病床邊的關鍵障礙。詳細分析瞭生物材料的I/II/III期臨床試驗設計考量,特彆是植入物長期免疫原性和生物學安全性的評估。展望瞭未來研究熱點,包括活體生物材料(In Vivo Biomaterials)的設計理念——材料能夠與宿主細胞和環境實時、動態地進行雙嚮通訊,以及個性化植入物製造對患者預後的影響。強調瞭多學科交叉閤作(材料、生物學、AI輔助設計)在加速創新中的必要性。

著者信息

作者簡介

Hossein Hosseinkhani


  Professor Hossein Hosseinkhani received his Ph.D degree in Polymer Chemistry in the field of Biomedical Engineering from Kyoto University, Japan (1998-2002). Dr. Hosseinkahni has broad experience in life sciences and is expert in nanotechnology, biomaterials and stem cells technology for regenerative medicine and biomedical engineering applications. He has been awarded several prestigious fellowships including JSPS Fellowship of Japan   at Institute for Frontier Medical Sciences, Kyoto University Hospital (2002–2004), ICYS Research Fellow of Japan at Notational Institute for Materials Science (2004–2008), IRIIMS Research Fellow of Japan at International Research Institute for Integrated Medical Sciences, Tokyo Women’s Medical University (2008–2009), and Visiting Scientist at Center for Biomedical Engineering, Massachusetts Institute of Technology (MIT), USA (2007–2009). Dr. Hosseinkhani has 50 issued Japan and U.S. patents, several U.S. patents pending and has authored over 100 international publications in prestigious international journals and over 200 presentations at international conferences till present time. Currently, he is Director of Bioengineering Program and Professor at the Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech).

Keng-Liang Ou

  Professor Keng-Liang Ou graduated from Mechanical Engineering Ph.D. program at National Chiao Tung University, Taiwan. Professor Ou came to Taipei Medical University to pursuit on biomaterial research and development and he becomes the current elected Dean of College of Oral Medicine in Taipei Medical University, Taiwan. He is also in charge of Graduate Institute of Biomedical Materials and Tissue Engineering, Research Center for Biomedical Implants and Microsurgery Devices and Research Center for Biomedical Devices and Prototyping Production. Besides the institutional positions, he is the President of Institute of Plasma Engineering Taiwan, the leader of The Taiwan society for metal heat treatment and the Head Taiwan Oral Biomedical Engineering Association. Professor Ou focuses his researches on, Biomaterials, Bioengineering, Nanotechnology, and Biomedical Devices. He is the leader and organizer for the biomedical product design, production, manufacturing, testing, legalization and market planning, with supports from team of scientists and researchers with different expertise. Professor Ou was honorably awarded with the 49th Ten Outstanding Young Persons of Taiwan on 2011.

圖書目錄

Chapter 1 Introduction to Biomaterials

Chapter 2 Biomedical Materialxs

2.1 Introduction
2.2 Biodegradable Polymers
2.3 Natural Biomaterials
2.4 Biodegradable Nanoparticles
2.5 Controlled Release Drug Delivery Systems
using Biomaterials
References

Chapter 3 Physical Properties of Biomaterials
3.1 Physical properties of materials
3.2 Introduction of spectroscopy
3.3 Thermal properties
3.4 Thermal analysis
Reference

Chapter 4 Mechanical Behavior of Biomaterials
4.1 Introduction
4.2 Mechanics of Materials
4.3 Mechanical Testing
4.4 Fracture of Materials
References

Chapter 5 Hydrogels in Medicine
5.1 Introduction
5.2 Mechanical properties of hydrogels and
interpenetrating networks
5.3 Engineering hydrogels with controlled
mechanical , chemical and biological
properties
5.4 Developing methods of fabricating composite
biodegradable hydrogels using IPNs
5.5 Engineering approaches to deliver growth
factors from hydrogels
5.6 Drug delivery systems using polymeric
hydrogel
References

Chapter 6 Surface treatment of biomedical materials
6.1 Chemical method
6.2 Electrochemical method
6.3 Plasma method
6.4 Ion beam implantation
6.5 Characterization technique
Reference

Chapter 7 3D In Vitro Systems for Biological Application
7.1 Introduction
7.2 3D In Vitro Systems
7.3 3 D Cellular Microenvironment
7.4 3D Technology on Frontier of Neuroscience
7.5 Regenerative medicine therapy
7.6 Future prospects
References

Chapter 8 Cell and Gene Therapy based on Biomaterials
Technology
8.1 Introduction
8.2 Engineering Cellular Environment
8.3 Combinatorial Cell/Polymer Interaction
Studies
8.4 Biomaterial Control of Mesenchymal Stem
Cell Differentiation
8.5 Biomaterial Control of Embryonic Stem Cell
Differentiation
8.6 Classification of cellular barriers systems
8.7 Calissification of gene delivery systems
References

Chapter 9 Nanotechnology inMedicine
9.1 Introduction
9.2 Classification of nanomaterials
9.3 Nanocarriers
9.4 Nanoscaffoling Materials
9.5 Biocompatibility and toxicity of nanomaterials
9.6 Safety issue of nanomaterials
9.7 Limitations of nanomaterials technology in
nature and medicine
9.8 Future Prospects
References

圖書序言

圖書試讀

Biomaterials technology is one newly emerging biomedical form to create new device and induce the regeneration of detective and injured body tissues and organs as well as to substitute the biological functions of damaged organs. To this end, the cells of high proliferation and differentiation potentials are used with being combined with some cell scaffolds and the biological signals of growth factor and gene. Since there are some cases in which cells are genetically innovated to produce the growth factors inducible angiogenesis and tissue regeneration, the technology of gene delivery is also necessary for tissue engineering. Current developments in the technological fields of biomedical and tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools for in vitro and in vivo applications. The purpose of biomaterials technology is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. The development of new technology for analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present new area of technology that allows analysis in vitro on engineered tissues. An extension of the biomaterials technology has also allowed tissue and organs development, which can be considered as a first step towards the replacement of animal testing using a combined organ model.

用户评价

评分

對於一本名為《Advanced Biomaterials for Biomedical Engineering》的書,我抱有的期待是它能夠引領我進入生物材料研究的最前沿,尤其是在那些能夠直接改善人類健康的創新應用方麵。我非常期待書中能夠詳細介紹那些用於構建人造器官和復雜組織的先進支架材料,它們是如何通過精準的微觀結構設計,模仿天然組織的復雜性,並促進細胞的黏附、增殖和分化。這包括對各種聚閤物、陶瓷、金屬及其復閤材料在三維打印和組織工程中的應用的深入探討。我希望能找到關於這些材料的力學性能、生物相容性以及可控降解行為的詳細分析,以及它們如何為細胞提供適宜的微環境。此外,我同樣關注的是藥物遞送係統,特彆是那些能夠實現靶嚮、按需釋放的智能藥物載體。書中是否會深入探討脂質體、聚閤物納米粒、微球等載體的設計原則,以及如何通過錶麵修飾和分子識彆來提高藥物遞送的特異性和效率?整本書的深入性和前瞻性是我關注的重點。

评分

這本書的內容,我預想會是一次深入骨髓的探索之旅,尤其是在生物醫學工程這個日新月異的領域。我最為期待的是,它是否能夠為我揭示那些能夠“溝通”生物體,從而實現精確治療的智能生物材料。比如,那些能夠根據體內環境變化(如pH值、溫度或特定生物標記物)而改變其性質,從而釋放藥物或觸發特定反應的響應性水凝膠。我希望能詳細瞭解這些材料的設計原理,包括其分子結構、交聯機製以及如何調控其響應性。此外,在再生醫學方麵,書中是否會深入探討如何利用三維生物打印技術,結閤先進的生物墨水,製造齣具有復雜三維結構的組織和器官模型,從而加速新藥研發和疾病模型的研究。關於生物相容性,這本書會不會詳細介紹評估和提高材料生物相容性的方法,包括細胞毒性測試、免疫原性評估以及體內長期植入實驗,確保材料在與人體組織長期接觸時不會引起不良反應。閱讀過程中,我希望能遇到那些能夠激發我思考,並且提供大量最新研究成果的章節,幫助我緊跟學科前沿。

评分

這本書在我眼中,應該是一本匯聚瞭生物材料領域最尖端知識的寶庫。我特彆希望能從中窺探到那些能夠與人體細胞進行“交流”,從而激活機體自身修復能力的材料。例如,那些能夠促進骨骼再生、軟骨修復甚至神經再生的生物活性材料,它們是如何通過釋放生長因子、誘導信號分子或提供特定細胞黏附位點來發揮作用的。我希望書中能夠提供關於這些材料的組成、結構以及生物學機製的詳盡闡述。同時,對於生物醫學成像領域,我非常好奇書中是否會探討那些能夠作為造影劑或成像探針的生物材料,例如用於增強MRI、CT或熒光成像效果的納米粒子。我希望能瞭解這些材料的光學、磁學和化學性質,以及它們如何被設計以實現高分辨率和特異性的成像。這本書的知識深度和廣度,以及其在解決實際醫學問題方麵的潛力,是我非常看重的。

评分

我預想這本書將是一次深入探索生物材料如何塑造未來醫療的旅程。我最為好奇的是,書中是否會詳細介紹那些能夠模擬天然細胞外基質,為細胞提供三維生長和分化微環境的先進材料。這包括對生物打印技術中使用的生物墨水、可降解支架材料以及細胞外基質組分(如膠原蛋白、透明質酸)的深入分析。我希望能夠瞭解這些材料的力學性能、生物相容性以及它們如何影響細胞行為。此外,對於生物電子學與生物材料的交叉領域,我非常期待書中能夠提供關於能夠實現生物信號檢測和調控的材料的最新進展。例如,用於可穿戴健康監測設備、神經接口或植入式傳感器的材料。書中是否會深入探討這些材料的導電性、生物相容性以及它們與生物組織的相互作用機製?我希望這本書能夠提供紮實的理論基礎和前沿的研究實例。

评分

我對這本書的期待,主要集中在那些能夠推動疾病治療進入新紀元的材料科學突破。例如,我希望能深入瞭解那些能夠模擬人體天然細胞外基質,並為細胞提供生長和分化微環境的生物材料,它們是如何在組織修復和再生中發揮關鍵作用的。書中是否會詳細介紹不同類型的細胞外基質模擬物,如膠原蛋白、縴連蛋白、層粘連蛋白等天然生物材料,以及它們在重構受損組織中的潛力?我同樣好奇書中對於生物電子材料的論述,這類材料如何與生物信號相互作用,例如用於神經接口,能夠捕捉和刺激神經信號,從而為神經係統疾病的治療提供新的途徑。我希望這本書能夠提供關於這些材料的電學、光學和機械性能的詳盡信息,以及它們如何與生物係統進行集成。另外,關於生物安全性,我非常關心書中是否會深入探討材料在體內的長期穩定性和降解行為,以及如何避免潛在的毒副作用和免疫排斥反應。整本書的學術嚴謹性和信息的時效性對我來說至關重要。

评分

這本書的標題本身就暗示瞭其內容的高度專業性和前沿性。我尤其希望書中能夠詳細闡述那些能夠與人體免疫係統協同作用,從而增強治療效果的生物材料。例如,用於癌癥免疫治療的納米載體,它們如何能夠激活免疫細胞,增強機體對腫瘤細胞的識彆和殺傷能力。我希望能找到關於這些材料的免疫學機製、設計策略以及臨床前研究進展的詳盡介紹。此外,對於醫療器械的生物材料選擇,我同樣感興趣。書中是否會深入探討各種植入式醫療器械(如心髒支架、人工關節、人工晶體)中所使用的生物材料的性能要求,例如抗血栓性、耐磨性、生物相容性以及長期穩定性,並分析不同材料的優缺點。我希望這本書能夠提供豐富的案例分析,幫助我理解材料選擇在醫療器械設計中的重要性。

评分

當我看到這本書的標題時,我立刻聯想到的是那些能夠“與生命對話”的智能生物材料。我最為期待的是,書中是否能深入探討那些能夠模擬天然細胞外基質,為細胞提供三維生長和分化微環境的先進材料。這包括對生物打印技術中使用的生物墨水、可降解支架材料以及細胞外基質組分(如膠原蛋白、透明質酸)的深入分析。我希望能夠瞭解這些材料的力學性能、生物相容性以及它們如何影響細胞行為。此外,對於生物電子學與生物材料的交叉領域,我非常期待書中能夠提供關於能夠實現生物信號檢測和調控的材料的最新進展。例如,用於可穿戴健康監測設備、神經接口或植入式傳感器的材料。書中是否會深入探討這些材料的導電性、生物相容性以及它們與生物組織的相互作用機製?我希望這本書能夠提供紮實的理論基礎和前沿的研究實例。

评分

這本書的封麵設計,讓我聯想到的是那些能夠“聽懂”身體語言的智能材料。我特彆想知道,書中是否會詳細闡述那些能夠感知生物信號,並以此為基礎做齣響應的生物傳感器。例如,那些能夠檢測血糖、乳酸或其他生物標誌物的傳感器,它們是如何與生物體進行無縫集成的,以及如何實現高精度、高靈敏度的檢測。我希望書中能夠提供關於傳感原理、材料選擇以及信號轉導機製的深入解析。此外,對於組織工程領域的最新進展,我希望能看到關於類器官構建技術的詳細介紹,如何利用生物材料和工程技術,在體外模擬特定器官的功能和結構,用於藥物篩選、疾病研究以及未來器官移植。這本書是否會深入探討不同材料在類器官構建中的作用,例如支架材料的選擇、細胞的播種和培養技術?最後,我對生物材料的生物降解和體內代謝過程非常感興趣,希望能找到關於這些過程的詳細描述,以及如何控製材料的降解速率和産物,以確保其安全性。

评分

這本書的封麵設計就透露齣一種沉甸甸的學術感,深邃的藍色背景搭配著銀色的字體,仿佛預示著它將帶領讀者潛入生物材料領域的深層奧秘。我迫不及待地翻開第一頁,期望能在其中找到關於仿生材料如何模擬人體組織結構和功能的詳盡闡述,尤其是在組織工程領域,例如用於修復受損骨骼、軟骨甚至心髒組織的先進支架材料,它們是如何通過精巧的微觀設計,引導細胞生長、分化並最終形成功能性組織的。我特彆關注的是書中是否深入探討瞭聚閤物、陶瓷、金屬以及復閤材料在這些應用中的最新進展,例如可生物降解聚閤物在藥物緩釋係統中的應用,以及如何精確控製其降解速率和降解産物的生物相容性,以最大程度地減少副作用。另外,我也希望能在此書中找到關於納米生物材料在疾病診斷和治療中的前沿應用,例如用於靶嚮給藥的納米顆粒,它們是如何設計以實現對病竈部位的精確識彆和藥物遞送,從而提高療效並降低全身毒性。文章的結構和邏輯性也極大地影響著閱讀體驗,我希望這本書能夠條理清晰,從基礎理論到實際應用,層層遞進,讓即使是初次接觸該領域的讀者也能循序漸進地理解。

评分

我期待這本書能夠為我打開一扇通往生物材料領域最前沿應用的大門,尤其是在那些能夠徹底改變疾病治療方式的創新技術方麵。我特彆關注書中是否會深入探討那些能夠實現靶嚮給藥和基因治療的納米生物材料。例如,如何設計能夠特異性結閤癌細胞錶麵標記物的納米顆粒,或者如何利用納米載體遞送siRNA、mRNA等基因治療藥物,從而實現精確的疾病乾預。我希望書中能夠詳細介紹這些納米載體的設計原理、製備方法以及在體內的轉運和釋放機製。同時,對於再生醫學,我非常好奇書中是否會介紹那些能夠引導乾細胞分化和組織再生的生物材料。這包括對具有特定生物活性的支架材料、生長因子緩釋係統以及細胞遷移誘導劑的討論。這本書的創新性和實用性是我非常看重的。

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 twbook.tinynews.org All Rights Reserved. 灣灣書站 版權所有